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Abstract—Quaternary Mount Nemrut stratovolcano, having a

spectacular summit caldera and associated lakes, is located north of

the Bitlis–Zagros suture zone, Eastern Turkey. Although much

attention has been paid to its geology, morphology, history and

biology, a detailed geophysical investigation has not been per-

formed in this special region. Thus, we attempted to characterize

the stratovolcano and the surroundings using total field aeromag-

netic anomalies. Potential field data processing techniques helped

us to interpret geologic sources causing magnetic signatures.

Resulting image maps obtained from some linear transformations

and a derivative-based technique revealed general compatibility

between the aeromagnetic anomalies and the near-surface geology

of the study area. Some high amplitude magnetic anomalies

observed north of the Nemrut caldera rim are associated with the

latest bimodal volcanic activity marked by lava fountains and

comenditic-basaltic flows occurred along the rift zone. After min-

imizing the high-frequency effects, a pseudogravity-based three-

dimensional inversion scheme revealed that the shallowest deep-

seated sources are located about 3.0 km below the ground surface.

Two-dimensional normalized full gradient solutions also exposed

the depths of these anomaly sources, in good agreement with the

inversion results. This first geophysical study performed through

aeromagnetic anomalies clearly gave insights into some main

magnetized structures of the Mount Nemrut stratovolcano.

Keywords: Bitlis, Mount Nemrut stratovolcano, aeromagnetic
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1. Introduction

Magnetic prospection can be performed for the

investigation of the geological structures, limited

between the surface and Curie temperature iso-

therm due to the well-known rock magnetism of the

crust (Blakely 1988; Xu et al. 2011; Bektaş et al.

2007; Aydemir 2009; Ekinci and Yiğitbaş 2012;

Balkaya et al. 2012, 2017; Boukerbout et al. 2018).

The method is suitable for numerous applications

ranging from shallow site investigations through to

large-scale ones such as hydrocarbon explorations

(Reynolds 1997). The magnetic features of the

rocks are related to magnetic minerals such as Fe-

Oxides. Generally, basic igneous rocks resulted

from the solidifications of magma have the highest

magnetic susceptibilities and therefore they pro-

duce high amplitude anomalies in comparison to

other rock types (Sharma 1986; Telford et al. 1990;

Kearey et al. 2002). Bulk rock composition, oxi-

dation rate, hydrothermal alteration, and

metamorphism affect the magnetic properties of

igneous rocks (Hinze et al. 2013). The magnetic

anomalies of a volcanic region can give insights

into the structural and volcanological properties of

the region. There have been many studies about the

volcanic areas using magnetic anomalies so far

(e.g. Fedi et al. 1998; Patella and Mauriello 1999;

Secomandi et al. 2003; Büyüksaraç et al. 2005;

Zurek and Williams-Jones 2013; Longo et al. 2016;

Afshar et al. 2017; Bilim et al. 2017; Paoletti et al.

2017; Nicolosi et al. 2019; Sawires and Aboud

2019).

Turkey is located in an actively deforming region

(Bozkurt 2001) and volcanism contributed to the

geological evolution of the country. This volcanism
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originated from the collision between Arabian and

Anatolian plates (Yılmaz et al. 1987, 1998; Şen et al.

2004; Karaoğlu et al. 2005; Özdemir et al. 2006)

remarkably affected the geomorphology of eastern

Turkey (Ulusoy et al. 2008). In this region, the known

youngest volcanic center is the Mount Nemrut which

has three evolutionary stages (Aydar et al. 2003;

Özdemir et al. 2006; Çubukçu 2008; Ulusoy 2008).

These stages are pre-caldera extending from

1.01 ± 0.04 Ma to 80 ± 20 ka, syn-caldera between

at least 89 ka and fewer ages as 30 ka, and post-

caldera extending from 30 ka to the historical times.

Basaltic lavas of the main cone and twenty craters of

various sizes, ranging from 10 to 100 m in diameter

are the clues showing that Mount Nemrut is a stra-

tovolcano structure (Yılmaz et al. 1998). Mount

Nemrut stratovolcano having a spectacular elliptical

summit caldera with 8.5 9 7 km diameter (Ulusoy

et al. 2008) is a polygenetic stratovolcano (Yılmaz

et al. 1998). The caldera is also a natural relic since

2003 (Seven et al. 2019). In the caldera, there are two

permanent lakes (Nemrut and Hot Lakes) covering an

area of 12.83 km2 and three seasonal small lakes. Ten

pyroclastic deposits of maar, 12 lava domes, and 3

lava flows fill the other parts of the caldera. (Ulusoy

et al. 2008). Nemrut was considered a dormant vol-

cano before (Yılmaz et al. 1998). However, data

obtained from the first seismic network for volcano

monitoring in Turkey revealed 33 volcanic-linked

seismic events (Ulusoy 2008). Thus, we can say that

the Nemrut stratovolcano is quiescent. Pre-caldera

products are mainly lava flows and domes. Pyro-

clastic series indicate the syn-caldera stage, of which

sequences consist of plinian units and ignimbrite

flows. Post-caldera activity is represented by basaltic-

rhyolitic effusive activity, even in historical times

(Karakhanian et al. 2002; Ulusoy 2008) and

hydrothermal activity in the caldera and on the

Nemrut rift zone (Ulusoy et al. 2008). The volcanic

rocks from basalt to rhyolite and pyroclastics spread

over a large plateau of the Miocene continents (Yıl-
maz et al. 1998). Although Mount Nemrut

stratovolcano has been extendedly studied, a com-

prehensive geophysical characterization is still

lacking. Hence, we analyzed the total field aero-

magnetic anomalies of this region for the first time.

We used linear transformations (Reduction-to-the-

pole (RTP), pseudogravity transformation (PSG),

upward continuation), total horizontal derivative

(THD), radially averaged power spectrum, a statisti-

cal approach, three-dimensional inversion and two-

dimensional normalized full gradient (NFG) to better

understand the surface and subsurface sources caus-

ing magnetic anomalies.

2. Tectonic Setting and Geology

Subduction and collision events were mainly

following the closure of Paleo-Tethys during the

Middle Jurassic. The onset of subduction was the

Late Jurassic (?)-Early Cretaceous in the south of

Pontides in Fig. 1 (Şengör and Yılmaz 1981; Kuzu-

cuoğlu et al. 2019). Through the Middle Cretaceous,

another subduction zone initiated to act. Both sub-

duction zones eliminated as a part of Neo-Tethys, the

line of which lies along İzmir-Ankara-Erzincan

(Fig. 1) and ended with collisions during the Middle

Eocene (Kuzucuoğlu et al. 2019). Following the

collision, the shortening or squeezing continued in

Early Miocene (Burdigalian) into the west of the

Eastern Anatolia Plateau (NE Anatolian Plate in

Fig. 1) and, in the Late Paleocene in the west of

Anatolia. During the Early Miocene (Burdigalian, ca.

20 Ma ago), the different collision commenced in

southeastern Anatolia caused by the Arabian Plate

sliding under the Anatolian Plate (Koçyiğit et al.

2001; Kuzucuoğlu et al. 2019). In contrast, the

southern branch of Neo-Tethys (known as the Bitlis

Ocean) persisted in the Middle Miocene (Serravalian,

ca. 11–13 Ma ago) and then closed completely by

continent–continent collision and suturing. The

suture is known as Bitlis–Zagros Suture (Fig. 1). The

collision N–S directed and following the post-colli-

sional intracontinental convergence continued at the

end of Late Miocene and Early Pliocene (Koçyiğit

et al. 2001). The region (Eastern Anatolia Plateau in

the present) intervened both of Lesser Caucasus

(Fig. 1) and Bitlis–Zagros Suture began rising

(* 2 km-high plateau in the present) while the west

of Anatolia was under the extension regime (Kuzu-

cuoğlu et al. 2019). The rising let form Anatolian

Plate, dextral (right sided) North Anatolian Fault

Zone and sinistral (left sided) East Anatolian Fault
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Zone (Fig. 1) (Şengör et al. 1985). The forming of

the two fault zones provoked WSW direction escape

of Anatolian Plate (plate movements in Fig. 1) from

the convergent zone onto the oceanic lithosphere of

the African Plate (Koçyiğit et al. 2001; Kuzucuoğlu

et al. 2019). The post-collisional condition is also

responsible for magmatism (Şengör et al. 2008) and

its surface expression as volcanism. The volcanic

activity of Eastern Anatolia Plateau increased during

the late Miocene–Pliocene, continued during Qua-

ternary and even in historical times (Yılmaz et al.

1998). The ages of the volcanic rocks vary from

about 11 Ma to possibly seventeenth century A.D.

and they are derived from an enriched mantle (Şengör

et al. 2008).

The tectonic regime initiated the formation of

Nemrut, Süphan and Ağrı stratovolcanoes, and Ten-

dürek shield volcano (Karaoğlu et al. 2005, 2017) in

Eastern Turkey (Fig. 2). The first volcanic

manifestation in Nemrut initiated with metaluminous

trachytic lavas (Ulusoy et al. 2019). The development

of the main cone was associated with events of per-

alkaline rocks (comendites, pantellerites) and

comenditic trachytes (Çubukçu 2008). Peripheral

silicic doming characterizes the pre-caldera stage.

Mazik and Kirkor Dome Complexes are the largest

silicic ones placed southwest and western side of

Nemrut volcano (Fig. 3). During this stage, basaltic

trachyandesitic (mugearite) lava flows formed and

outcrop the southern and southwestern flanks on the

recent topography (Fig. 3). Explosive eruptions

occurred during syn-caldera stage of the volcano

evolution (Ulusoy et al. 2019) and produced pyro-

clastic fall/flow deposits known as Nemrut and

Kantaşı ignimbrites (Ulusoy et al. 2012). Post-caldera

rocks exist in the caldera and on the Nemrut rift zone

(Fig. 3). Rhyolite (comendite) rocks partly cover the

inner-caldera surface. The fissure eruption on the rift

Figure 1
Simplified neotectonic map showing major sutures, faults, and geologic and geographic features in Turkey and the surrounding area (modified

from Okay and Tüysüz 1999; USGS 2010; Yiğitbaş et al. 2004; Ekinci et al. 2013; Ekinci and Yiğitbaş 2012, 2015)
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zone produced rhyolite (comendite) and basalt (Ulu-

soy et al. 2019). This event was mentioned in the

chronicles (Karakhanian et al. 2002) and the histori-

cal record (Şerefhan 1597).

Although the evolution of Mount Nemrut strato-

volcano is debated, we can assure that the first

volcanic activities commenced about 1.0 Ma in the

early Quaternary period, with crack eruptions settling

in air ducts separated by 5–10 km. The predominant

activity occurred in Pleistocene and Holocene (Yıl-
maz et al. 1998; Ulusoy et al. 2008). Nemrut

stratovolcano has a major role in the geography of

Eastern Anatolia. Possibly 250 ka years ago (middle

Pleistocene), an explosion occurred and actual water

flow from Van Basin toward the Muş Basin was

prevented because of a 60 km in length lava flow, and

Lake Van known as Turkey’s largest lake was formed

(Güner 1984; Karaoğlu et al. 2004). The last activity

of Mount Nemrut stratovolcano has been recorded in

the historical resources (Şerefhan 1597; Karakhanian

et al. 2002). The historical inscription of Şerefhan

(1597) describes that the activity of 1441 A.D. con-

tinued at least up to 1590’s. However, the event of

1692 activity is uncertain despite being a chronicle on

it (Karakhanian et al. 2002; Ulusoy et al. 2008).

Eruption dates of the stratovolcano and the related

events-products are schematized in Fig. 4. The his-

torical volcanic activity during the fifteenth and

sixteenth centuries (1441, 1597, and 1692 A.D in

Fig. 4) can be inferred that their locations can overlap

underlying shallower magma chamber(s) triggering

the historical activity rather than possible and deeper

other magmatic ones or evacuated magma chamber

stated in Ulusoy et al. (2012) during the syn-caldera

Figure 2
Location map showing the study area and surrounding. Volcanoes and the important earthquakes in the region are also shown on the map.

Earthquake data were obtained from Boğaziçi University, KOERI-RETMC earthquake catalog search system (http://www.koeri.boun.edu.tr/

sismo/zeqdb/). NM Nemrut Mountain, SM Süphan Mountain, TM Tendürek Mountain, AM Ağrı Mountain. The map was generated by using

Generic Mapping Tools (GMT) (Wessel and Smith 1995)
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stage. The supported findings come from gas geo-

chemistry (Nagao et al. 1989; Kipfer et al. 1994;

Ercan et al. 1995), volcano-seismology (Ulusoy

2008), and geochemical modeling (Çubukçu 2008).

According to gas geochemistry, R/RA values (where

R = gas sample 3He/4He and Ra = air 3He/4He) is

about 7 for Nemrut stratovolcano. Güleç et al. (2002)

reported that the mantle contribution reaches a max-

imum at Nemrut stratovolcano in Eastern Anatolia.

Volcano-seismic records around the volcano reveal

an active magma chamber emplaced around the depth

of 4–5 km (Ulusoy 2008). The compositional spec-

trum of mineral phases of all eruptive units and

calculated crystallization conditions indicate that

compositionally and physically zoned (* 600 to

1050 �C) magma reservoir exists (Çubukçu 2008).

3. Data Analyses, Results and Discussion

3.1. Aeromagnetic Data Set

A national institution of Turkey named General

Directorate of Mineral Research and Exploration

(MTA) performed the total field aeromagnetic survey

of the country between 1975 and 1989 using north–

south fly paths with profile spacings of 1–2 km. In

this draped-mode aeromagnetic survey the flight

height, controlled by radar altimetry, was about

Figure 3
The geological map of the study area (simplified from Ulusoy 2008). The red line throughout the caldera is the profile used in Fig. 6. The same

rocks marked with different colors indicate different ages through the evolution of Nemrut stratovolcano. The map uses Universal Transverse

Mercator projection with WGS 84 datum in 38 Northern Hemisphere Zone

Vol. 177, (2020) Geophysical Investigation of Mount Nemrut Stratovolcano 3247



610 m (2000 feet) from the ground surface and the

data sampling along every profile was 70 m. The

same institution carried out the corrections for diurnal

variations and heading errors. The total field mag-

netic anomaly map of the entire Turkey exists in

some publications (Ateş et al. 1999; MTA 2010).

Here, International Geomagnetic Reference Field

(IGRF, 1982.5 epoch) corrections were employed to

the 1 9 1 km gridded data set (Fig. 5a). We used an

algorithm made available by the International Union

of Geodesy and Geophysics Association of Geomag-

netism and Aeronomy (Baldwin and Langel 1993).

3.2. Near-Surface Magnetic Sources

It is well known that the shape of the gravity

anomaly is related to the mass distribution and

therefore high amplitude gravity anomalies are found

on dense masses. However, the same idea is not valid

for magnetic anomalies due to the added complexity

caused by the directions of the magnetization and

ambient field. These complexities merge a phase and

distort the anomaly shapes (Blakely 1995), and

necessitate the RTP technique (Baranov and Naudy

1964). The following expression transforms the

magnetic anomaly (Blakely 1995).

DTRTP ¼ F�1 wRTP F DTð Þ½ � ð1Þ

where, DTRTP denotes the RTP anomaly, F and F�1

represent the Fourier and inverse Fourier transforms,

wRTP denotes the RTP filter in wavenumber domain

and DT represents the observed magnetic anomaly.

In the RTP application, we increased the data length

in the grid to the next higher power of 2 by using

pseudo numbers before the transformation for the

elimination of possible edge effects caused by the

nature of discrete Fourier transform. The added bands

were neglected after the operation. Figure 5b shows the

RTP image map. As previously stated, the aeromagnetic

data were acquired using a draped survey mode at a

constant terrain clearance, rather than at a constant

elevation (level survey). Thus, almost every single data

was acquired at different altitudes because of the rugged

topography in the region. Drape-flying mode in aero-

magnetic surveys can sometimes increase the anomaly

amplitudes undesirably (Grauch and Campbell 1984),

but over the strongly magnetized topographies, as in our

case, this effect is generally small (Walls and Hall

Figure 4
Eruption dates, products and events of the historical and older eruptions of the Nemrut stratovolcano (from Ulusoy et al. 2008 and the

references therein)
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1998). Nevertheless, to see the effects of the draped-

mode data acquisition on the magnetic anomaly

amplitudes, we continued every single magnetic data

upward to a datum horizontal plane coinciding over the

highest topography (Fig. 5c). This approach was

reported to be useful by some researchers (Grauch

and Campbell 1984; Tivey et al. 1993; Szitkar and

Dyment 2015; Szitkar et al. 2015). We used the

following expression (Blakely 1995) to reduce every

single magnetic data to a horizontal plane.
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Figure 5
a Total field aeromagnetic anomaly of the study area; b RTP anomaly field of the data in a; c total field magnetic anomaly reduced to a datum

horizontal plane coinciding over the highest topography; d RTP anomaly field of the data in c. The black circles on both maps indicate the rim

of the Nemrut caldera. The black line throughout the caldera is the profile used in Fig. 6. The maps use Universal Transverse Mercator

projection with WGS 84 datum in 38 Northern Hemisphere Zone
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DTUP ¼ F�1 e�Dz kj j F DTð Þ
� �

ð2Þ

where, DTUP denotes the upward continued anomaly,

e denotes the exponential function, Dz is the contin-

uation level and k represents the radial wavenumber

at grid points. Possible edge effects were removed as

explained previously. The new RTP anomaly map

(Fig. 5d) was obtained using the data reduced to a

horizontal plane. The comparison of two RTP maps

shows that although the magnetic anomalies in the

new RTP map are in smoother form resulting in a loss

of some high frequencies, the main magnetic highs in

the vicinity of the caldera rim do not change signif-

icantly. To understand the effects of two different

data types in detail, we compared topographic data

and two RTP data sets of Nemrut stratovolcano

through a north–south directed profile (Fig. 6). It is

seen that sharp topographic changes do not produce

too severe spurious phases in the anomaly amplitudes

in our case. High amplitude magnetic anomalies of

the draped and level data seen in the beginning of the

profile and between the caldera rims are in consistent

with each other. These two aeromagnetic data

acquisition techniques have both superior and weak

sides to each other, which were well explained in

Grauch and Campbell (1984). To avoid misleading

interpretation, the data acquired via drape-mode fly-

ing should be reduced into the level data or vice versa

for a comparison before the grid operation steps

(Grauch and Campbell 1984).

The north–south trending magnetic highs located

at west of caldera rim (black ellipse) in Fig. 5a, c are

shifted northwest and west of the caldera in the RTP

maps (Fig. 5b, d). High and moderate magnetic

anomaly patterns still exist at north and east of the

caldera, respectively. Relatively lower magnitude

magnetic values dominate south of the caldera. There

is no overlap between the caldera position and the

high amplitude magnetic anomalies. This case indi-

cates that the magnetized sources causing the high

amplitude anomalies are not beneath the caldera’s

location exactly. The magnetic highs located north

and northwest of the caldera rim are most likely due

Figure 6
Left panel shows the digital elevation model of the Nemrut stratovolcano and surrounding. Right panel shows the elevation data and the RTP

anomalies of the profile shown in Figs. 3 and 5. The map uses Universal Transverse Mercator projection with WGS 84 datum in 38 Northern

Hemisphere Zone
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to Kantaşı ignimbrite (Fig. 3). Kantaşı ignimbrite

located north of the caldera rim produces high-

amplitude magnetic values over the profile while

Nemrut ignimbrite shows relatively low magnetic

anomalies (Fig. 6). Kantaşı and Nemrut ignimbrite

series are the product of the caldera-forming (syn-

caldera) eruptions. The collapse of the caldera

occurred due to the catastrophic pyroclastic eruption

related to evacuation of the magma chamber during

the syn-caldera aged between ca. 90–30 ka (Çubukçu

et al. 2012). The pyroclastic series of Kantaşı
ignimbrite (Ulusoy et al. 2008) spread in the northern

part of the volcano and on the Kantaşı hill. The rift

activity occurred north of the caldera rim between

Nemrut plain and Kantaşı hill (Fig. 3). Kantaşı
ignimbrite covers the ridge through the rift and its

adjacent areas. Along the ridge with fractured and

cracked Kantaşı ignimbrite, lava flowed over them.

The activity marked by lava fountains and flow

occurred in the northern end of the rift identifying the

latest volcanic activity of 1441 A.D. continued at

least up to 1597 A.D. (Şerefhan 1597; Karakhanian

et al. 2002). This activity is bimodal rift activity

produced comendites and basalts (Ulusoy et al.

2012). Therefore, high amplitude magnetic anomalies

observed north of the caldera rim (Fig. 6) are most

likely associated with these exposures of comenditic

and basaltic flows. The anomaly peak located at the

beginning of the profile (Fig. 6), in both draped and

level data, is in excellent agreement with the location

of the flows along the Nemrut rift zone. On the other

hand, although Nemrut ignimbrite covers the largest

area in comparison to the other products of the

Nemrut stratovolcano (Ulusoy et al. 2008) and it

extends to the northeast and western shorelines of

Lake Van, there has not been such an activity in the

area, as also confirmed by magnetic anomalies having

relatively low amplitudes. The moderate increase of

the magnetic anomalies between the caldera rims

(Fig. 6) is associated with intra-caldera lava flows,

domes, and eruptions represented by comendite type

lava and ash. These results show that high-frequency

surface/near-surface sources in the study area have

remarkable effects on the amplitudes of airborne

magnetic anomalies. We performed an edge approx-

imation procedure to better understand abrupt lateral

Figure 7
Left panel illustrates the PSG anomaly map of the data shown in Fig. 5a, and right panel illustrates the THD anomaly map of the data in the

left panel. The black circles on both maps indicate the rim of the Nemrut caldera. The maps use Universal Transverse Mercator projection

with WGS 84 datum in 38 Northern Hemisphere Zone

Vol. 177, (2020) Geophysical Investigation of Mount Nemrut Stratovolcano 3251



changes in magnetization by transforming the mag-

netic data to PSG anomalies and then calculating the

THD amplitudes (Cordell and Grauch 1985; Blakely

1995). The following formulation produces the PSG

anomaly (Blakely 1995).

DTPSG ¼ F�1 wPSG F DTð Þ½ �x ð3Þ

where, DTPSG is the PSG anomaly, wPSG denotes the

linear PSG filter in wavenumber domain and x rep-

resents the constant term expressed in Blakely

(1995). We eliminated possible edge effects as

explained previously. PSG image map (Fig. 7 left

panel) exhibits a smoother anomaly pattern of the

study area. Since the computation of the horizontal

derivatives in space domain is more favorable than

doing in wavenumber domain (Arısoy 2014; Ekinci

2017), we used the following simple finite difference

approach to obtain THD anomalies.

THD ¼ oDTPSG

ox

� �2

þ oDTPSG

oy

� �2
 !" #1=2

ð4Þ

where,

oDTPSG x; yð Þ
ox

� oDTPSG i þ 1; jð Þ � oDTPSG i � 1; jð Þ
2Dx

ð5Þ

oDTPSG x; yð Þ
oy

� oDTPSG i; j þ 1ð Þ � oDTPSG i; j � 1ð Þ
2Dy

ð6Þ

where, i and j are the discrete values of the PSG

anomaly on the grid surface at uniform data spacings

Dx and Dy. THD image map (Fig. 7 right panel)

shows that the highest amplitudes are located north of

the caldera rim. A detailed look at the THD map and

the surface geology map of the region (Fig. 3) indi-

cates that the rapid lateral changes in the

magnetization located north of the caldera rim are

due to contact between Nemrut and Kantaşı ign-

imbrites. In addition, some high THD amplitudes also

exist in the contacts of these units in other parts of the

study area. On the other hand, although Kantaşı
ignimbrite does not reach to the western tip of the

Lake Van (Fig. 3), we observe moderate amplitude

THD anomalies in this area. Magnetic anomalies are

evident west of the caldera rim as well (Fig. 5b, d).

THD image map (Fig. 7 right panel) also indicates

some abrupt lateral changes in magnetization. These

high anomalies are most likely due to trachyte which

is a product of the pre-caldera stage of the Nemrut

volcanism (Fig. 3). Additionally, magnetic highs

cover a larger area than trachyte as seen in the

geology map (Fig. 3). Thus, it is reasonable to men-

tion that pre-caldera trachyte extends westward

beneath the Nemrut ignimbrite. Ulusoy et al. (2008)

reported some relatively high thermal anomalies west

of the caldera rim. These thermal anomalies show

positive surface kinetic temperature values. Com-

patibility is evident between surface temperatures and

magnetic anomalies at that part of the study area.

Therefore, another possible interpretation of the

magnetic anomalies seen west of the caldera rim is

the presence of hydrothermal activities. A thermal

spring around Güroymak county located about 12 km

west of the caldera rim supports this idea. It is well-

known that hydrothermal effects tend to increase or

decrease magnetic properties based on some param-

eters such as fluid and host rock composition,

oxidation ratio, temperature of alteration, etc. (e.g.

Grant 1985; Pilkington and Hildebrand 2000; Tivey

and Dyment 2010). Hence, high amplitudes seen west

of the Nemrut caldera rim (Figs. 5b, d and 7 right

panel) are likely due to the structural elements

(faults) lying from the inner caldera or the top of the

caldera rim towards western flanks of the volcano

(Fig. 3). That is, the structural elements may be the

Figure 8
Upper panel shows the radially averaged power spectrum analysis

of the magnetic data, and lower panel shows the depth estimation

calculated by averaging the slope of the energy spectrum over five

points. Depth values include flight height
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main pathways controlling the circulation of

hydrothermal fluids with to the shallow groundwater

into the ignimbrite and pre-caldera trachyte. In the

region, total dissolved solid (TDS) is higher for

hydrothermal fluid than peripheral cold-water body

(Kurttaş and Tezcan 2018). Although Fe concentra-

tion was not reported, we assume that TDS most

likely contains total Fe concentration in hydrothermal

fluid due to metaluminous rocks covering the region.

3.3. Deep-Seated Magnetic Sources

We performed power spectrum analysis to esti-

mate the depths of deeper magnetized sources. The

slopes in the power spectrum plots are associated

with the depths of magnetized bodies (Spector and

Grant 1970). In the notation of Blakely (1995),

energy spectrum of block ensembles, consisting of

shallow and deeper sources, is defined as following.

F kð Þj j2¼ 4p2C2
m hmj j2 hf

�� ��2M2
0 e�2 kj jzt

1� e� kj j Zb�Ztð Þ
� �2

S2 a; bð Þ
ð7Þ

where, Cm is a constant, hm and hf denote the factors

related to the direction of magnetization and mag-

netic field, respectively, M0 denotes magnetization,

Zt and Zb are the top and the bottom depths of the

magnetized bodies, respectively, and S2 a; bð Þ is

associated with the horizontal dimensions of sources.

The top depths of the sources are estimated by fitting

segments to the power spectrum plots. Figure 8

shows radially averaged power spectrum results in

the wavenumber domain obtained through Oasis

Montaj software (Geosoft Inc.). The depth of the

deeper magnetized sources is 3.97 km (including the

flight height) derived by the first slope shown in the

upper panel. The depth estimations demonstrated in

the lower panel show the average values of the slopes

of the energy spectrum over five points. We obtained

a depth of about 4.13 km (including the flight height)

for the deeper sources based on averaging. Thus, we

assume that the shallowest deep-seated magnetic

sources are located about 4 km below the flight hight.

Additionally, we also considered the possible ambi-

guities of the power spectra technique described by

Quarta et al. (2000). Therefore, to avoid a contra-

diction we followed another technique proposed by

Zeng et al. (2007). In this technique to minimize the

effects of the short-wavelength sources, the optimum

upward continuation level is determined by a statis-

tical approach. Firstly, a series of continuation

heights is determined and then the correlation coef-

ficients between the upward continued data at two

successive heights are calculated. Continuation

height providing the maximum deflection of these

coefficients is assumed to be optimum continuation

level (Zeng et al. 2007). We calculated the correlation

coefficient between the upward continued data at two

successive heights by the following definition.

RA;B ¼
Pm

i¼1

Pn
j¼1 Amn � �Að Þ Bmn � �Bð Þ

Pm
i¼1

Pn
j¼1 Amn � �Að Þ2

� � Pm
i¼1

Pn
j¼1 Bmn � �Bð Þ2

� �h i1=2

ð8Þ

Figure 9
Left panel illustrates the correlation coefficients between the upward continued data sets at successive heights, and right panel illustrates the

maximum deflection showing the optimum continuation height
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where, A and B are the upward continued data

obtained at two successive heights, �A and �B represent

their average values, respectively. We used a vector

of linearly spaced heights between 1 and 15 km with

an increment of 0.25 km. Figure 9 left and right

panels demonstrate the correlation coefficients and

the maximum deflection height of our case, respec-

tively. The approach yielded an optimum

continuation height of 3.75 km. Considering the

results of power spectrum analyses and statistical

approach, we preferred 4 km height for upward

continuation process to minimize high-frequency

near-surface effects and to analyze the deep-seated

sources. Figure 10 left panel shows upward continued

RTP anomaly map. Short-wavelength anomalies

caused by surface/near-surface magnetized sources

seen in Fig. 5b, d are remarkably attenuated, whereas

anomalies of the underlying deeper sources are more

accentuated. We carried out a three-dimensional

inversion procedure to understand the subsurface

distributions of deep-seated structures causing strong

magnetic anomalies shown in Fig. 10 left panel. The

inversion procedure (Cordell and Henderson 1968)

supposes that the sources causing gravity anomalies

can be approximated by an assemblage of infinitely

extending vertically-sided prisms having a uniform

density. The following definition produces the

approximate gravity anomaly of any vertically-sided

prism element below any observation point on the

grid plane.

Dg ¼ cqs2
1

R2 þ d2ð Þ1=2
� 1

R2 þ d þ tð Þ2
� �1=2

2

64

3

75

ð9Þ

where, c denotes the gravitational constant, q repre-

sents the density of the prism element, s is the grid

spacing, R represents the distance between corre-

sponding grid node and the prism element beneath

the grid plane, and d is the depth to the top of the

prism element having a thickness of t. Here, an

improved form of the procedure (Kearey 1991) which

has been successfully performed to airborne magnetic

anomalies due to igneous rocks (e.g. Kearey 1991;

Ates and Kearey 1993, 1995; Ates et al. 1997;

Büyüksaraç et al. 2005; Bektaş et al. 2013; Balkaya

et al. 2017) was used. Firstly, we transformed the

Figure 10
Left panel shows the upward continued anomaly map of the data shown in Fig. 5b, and right panel shows the PSG anomaly map of the data in

the left panel. The black lines on the map indicate the NFG profiles. The black circles on the maps indicate the rim of the Nemrut caldera. The

maps use Universal Transverse Mercator projection with WGS 84 datum in 38 Northern Hemisphere Zone
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upward continued data into PSG data. After removing

the added pseudo-random data bands, we produced

the PSG image map (Fig. 10 right panel). We

inverted the PSG data set using 2668 vertical prisms

(58 rows 9 46 columns). In this inversion approach,

a horizontal reference plane is determined to delimit

either top, midpoint or bottom depths of the prism

elements. Since this step necessitates a priori infor-

mation for a more realistic interpretation, Curie-point

depths (CPD) of the eastern Turkey (Bektaş et al.

2007) were taken into consideration. The average

CPD of the study area is 19 km (Fig. 11). Thus, we

used a flat-bottom model having a depth of 19 km

assuming that the bottom depths of the vertically-

sided prisms accord with the depth of the Curie iso-

therm. Figure 12 illustrates the schematic

representation of this procedure. The inversion pro-

cess was performed using a uniform ratio of the

intensity of magnetization to density (Kearey 1991).

To determine the depths of the prisms located over

the grid points in the reference plane, we produced an

initial model involving 2668 vertical prisms through

the Bouguer slab formula (Bott 1960) given below.

Figure 11
CPD map of the eastern Turkey. The black rectangle shows the study area and the circle inside it indicates the rim of the Nemrut caldera

Figure 12
The schematic representation of the inversion procedure showing a

synthetic flat-bottom model
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T x; yð Þ ¼ gobs x; yð Þ 1

2pcq
ð10Þ

where, x; y are the coordinates of the reference plane,

gobs represents the observed anomaly, and the other

terms were given previously. The RMS value

between the observed and calculated data was the

lowest at the end of the 8th iteration. Figure 13 left

panel shows the inverse magnetic model produced

using the top depths of the prisms. The image map of

the difference between observed and calculated data

indicates a satisfactory solution (Fig. 13 right panel).

The thickest prisms lying on the reference plane have

a depth of about 3.6 km including the flight height,

which is close to the power spectrum result (about

4 km). At the final step, we performed two-dimen-

sional NFG technique through seven parallel profiles

extracted from the PSG anomaly map (see Fig. 10

right panel for the locations of the profiles). The NFG

technique combines downward continuation and

analytic signal. The technique yields satisfactory

results in the estimation of the causative body loca-

tion and depth using geophysical anomalies (Pašteka

2000; Zeng et al. 2002; Aydin 2007; Oruç and

Keskinsezer 2008; Sındırgı et al. 2008; Aghajani

et al. 2010; Ekinci and Yiğitbaş 2012, 2015; Sheng

and Xiaohong 2015; Ekinci et al. 2017; Soleimani

et al. 2018; Elysseieva and Pašteka 2019; Pamukçu

et al. 2019; Sındırgı and Özyalın 2019). The follow-

ing definition produces the dimensionless amplitude

of the two-dimensional NFG at any point over

x-profile (Berezkin 1967, 1973).

NFG xi; zj

	 

¼

oV xi;zjð Þ
ox

� �2

þ oV xi;zjð Þ
oz

� �2
" #v" #1=2

1
M

PM
i¼1

oV xi;zjð Þ
ox

� �2

þ oV xi;zjð Þ
oz

� �2
" #v" #1=2

ð11Þ

where, NFG x; zð Þ is the dimensionless amplitude, xi is

the data location over the measuring profile, M

denotes the data length, zj is the continuation depth,

and v is an operator controlling the values and the

width of the maximum anomaly (Sındırgı et al. 2008).
We obtained the directional derivatives using the

following definitions (Berezkin 1988).

Figure 13
Left panel shows the three-dimensional magnetic model of the study area, and right panel shows the difference between observed and

calculated PSG anomalies. The black circles on the maps indicate the rim of the Nemrut caldera. Depth values include flight height. The maps

use Universal Transverse Mercator projection with WGS 84 datum in 38 Northern Hemisphere Zone
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oV x; zð Þ
ox

¼ p
L

XN

n¼1

nBn cos
pnx

L

� �
epnz=Lq ð12Þ

oV x; zð Þ
oz

¼ p
L

XN

n¼1

nBn sin
pnx

L

� �
epnz=Lq ð13Þ

where,

Bn ¼ 1

L

ZL

�L

V x; 0ð Þ sin pnx

L

� �
dx ð14Þ

q ¼ sin
pn

N

� �.pn

N

h il
ð15Þ

where, Bn denotes the Fourier sine coefficient, q

represents the Lanczos smoothing term and it

removes Gibbs effect, n is the harmonic number, and

the parameter l controls the curvature of the q (see

Berezkin (1967) for more details). In NFG amplitude

maps contour lines are examined to find the optimum

harmonic limits. The main local maximum repre-

sented by fully closed symmetric contours generally

indicates the spatial parameters of the causative body

(e.g. Berezkin 1967; Aydin 2007; Sındırgı et al. 2008;
Ekinci et al. 2017). Here, we determined the optimal

harmonic limits by some trial-and-error applications.

Firstly, trying different harmonic limits we applied

the NFG procedure to profile 4 which represents the

highest amplitude anomaly. Figure 14 shows the

results of the NFG technique and fully closed contour

lines are evident in the harmonic limit of N ¼ 1� 7.

The local maximum indicates a depth of 4.1 km

(including the flight height) for the causative source.

This finding supports the results of power spectrum

analysis, statistical approach and three-dimensional

modelling scheme. We analyzed the other profiles

using the same optimum harmonic limits. Figures 15,

16 and 17 show that the source depths determined

through the NFG and inversion techniques are com-

patible with each other. Thus, it is reasonable to

mention that the causative blocks are located about

between 3.0 and 3.5 km below the ground surface.

These depth values gradually increase towards

Kantaşı hill and Nemrut caldera. Ulusoy (2008)

suggested the presence of a shallow magma chamber

at the depth of 4–5 km in the vicinity of Nemrut

caldera based on seismological data. He reported that

shallow and magma chamber related volcanogenic

earthquakes are mostly occurred at these depths.

Also, there is no observed seismological event above

these depths in the close vicinity of the Nemrut cal-

dera (Fig. 18). Hence, we mention that the

emplacement of the shallow magma chamber is most

likely above these magnetized blocks located

between Kantaşı hill and Nemrut caldera.

Figure 14
PSG anomaly, causative blocks obtained from three-dimensional

inversion and NFG solutions of profile 4 shown in Fig. 10 right

panel. Depth values include flight height
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4. Conclusions

In this study, we investigated Mount Nemrut

stratovolcano (Bitlis, Eastern Turkey), a quiescent

volcano located close to the continental–continental

collision boundary (Bitlis–Zagros suture zone),

through total field aeromagnetic anomalies. We per-

formed some linear transformations, total horizontal

derivative technique, power spectrum analysis, a

statistical approach, three-dimensional inversion

procedure and two-dimensional NFG technique to

better understand the nature of the magnetized sour-

ces beneath the stratovolcano and the surroundings.

We determined that short-wavelength anomalies

having moderate-high amplitudes in the area close to

the Nemrut caldera are in good agreement with the

geology map of the studied area. Strong magnetic

highs located north of the caldera rim are linked to

short- and long-wavelength anomaly sources. In this

area, the exposures of comendite and basaltic flows

related to bimodal rift activity on the Kantaşı hill

contribute to the increasing of magnetic anomaly

field. Another anomaly pattern located west of the

caldera rim is most likely associated with the pre-

caldera trachyte which extends over a larger area than

it appears on the surface geology map. Additionally,

the presence of hydrothermal fluids may have an

effect on the increase of amplitudes. It should be

noted that TDS amount is higher in hydrothermal

fluid which probably contains total dissolved Fe due

to metaluminous rocks covering the investigated

region. Structural elements of faults contribute an

Figure 15
PSG anomaly, causative blocks obtained from three-dimensional inversion and NFG solutions of profiles 1 and 2 shown in Fig. 10 right panel.

Depth values include flight height
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upward movement of hydrothermal fluids to shallow

depths there and bring about mixing of cold-less

mineralized water body with higher mineralized

hydrothermal fluids into porous of Nem-

rut and Kantaşı ignimbrites and pre-caldera trachyte.

High thermal values determined from ASTER surface

kinetic temperatures (Ulusoy et al. 2008) and the

presence of a thermal spring around the area are

supportive of this finding. Relatively high amplitude

magnetic anomalies exist east of the caldera rim. The

mineral assemblage of Nemrut eruptive products

range from metaluminous including Fe–Ti oxides

(basalt, mugearite) to peralkaline (rhyolite) types

(Çubukçu 2008). Thus, widespread Fe-rich rocks

have a significant influence on increasing the mag-

netic anomaly values in the investigated area. We

minimized the high-frequency effects through an

appropriate upward continuation level based on the

information obtained from the power spectrum anal-

ysis and a statistical approach. CPD-assisted three-

dimensional inversion procedure of PSG anomalies

revealed the depths of deep-seated source ensembles.

These deep-seated sources are the highly magnetized

wholly crystallized and solidified mass ensembles

extending from just above the Curie temperature

isotherm to the depths shown in Fig. 13 left panel.

The depth of the top of the shallowest magnetized

mass is about 3.0 km from the ground surface, which

is highly compatible with the solution of power

spectrum analysis (about 3.4 km). Additionally, two-

dimensional NFG solutions of the seven profiles

extracted from PSG anomalies provided insight into

the depths of these deep-seated sources. Profile 4

passing over the highest amplitude PSG anomaly

revealed about 3.5 km depth for the shallowest geo-

logic source from the ground surface. The depths of

the magnetic sources determined from NFG solutions

of other profiles are also in harmony with the results

of the inversion procedure. The seismological data

show that magma chamber related volcanogenic

Figure 16
PSG anomaly, causative blocks obtained from three-dimensional inversion and NFG solutions of profiles 3 and 5 shown in Fig. 10 right panel.

Depth values include flight height
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earthquakes occurred mostly at depth of 4–5 km

around the caldera (Ulusoy 2008). These vol-

canogenic earthquakes were not observed at

shallower depths (Fig. 18). Additionally, the top

depths of the crystallized and solidified deep-seated

rock masses determined through inversion and NFG

techniques do not contradict the presence of a magma

chamber at depth of 4–5 km in the vicinity of Nemrut

caldera and Kantaşı hill. Also, this location overlaps

with the activity of 1441 A.D. to 1597 A.D. (Şerefhan

1597; Karakhanian et al. 2002) through Nemrut rift

zone where comendite and basalt of the post-caldera

stage (Fig. 3) erupted. The spectrum of mineral

phases of all eruptive units and the calculated crys-

tallization conditions indicate that a compositional

and physical zoned magma reservoir can exist, hav-

ing a temperature range of * 600 to 1050 �C
(Çubukçu 2008). This temperature zonation is higher

than the Curie temperature, at which the rocks do not

produce observable magnetic responses. Therefore,

we could not obtain solidified and magnetized blocks

lower than 4–5 km depths near the caldera and the

rift zone. Besides, the lithostatic gradient of 1.5 kbar

(& 0.3kbar/km) reported by Çubukçu (2008) also

indicates a depth of 5 km for the magma chamber.

We note that the shallow magma chamber mentioned

herein triggered the post-caldera stage products of

rhyolite (comendite) and basalt which outcrop around

Kantaşı hill (Fig. 3) and we emphasize that the

shallow magma chamber does not mean the evacu-

ated magma chamber (Çubukçu et al. 2012) during

the syn-caldera stage.

Nemrut stratovolcano, as regards the regional

geology context of Eastern Anatolia, situated on the

eastern end of the Muş basin. The basin (Fig. 3) is the

deformed and remnant segment of the WNW trending

Oligo-Miocene Muş-Van basin (Koçyiğit et al. 2001)

which is located at the northern foot of the Bitlis–

Zagros suture zone (Bitlis metamorphics in Fig. 3).

The Muş basin is bounded at north with a fault

Figure 17
PSG anomaly, causative blocks obtained from three-dimensional inversion and NFG solutions of profiles 6 and 7 shown in Fig. 10 right panel.

Depth values include flight height
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(Fig. 3) of dextral and strike-slip components (Dhont

and Chorowicz 2006). The right lateral (strike-slip)

movement of the northern margin of Muş basin with

respect to the southern thrust (the Bitlis–Zagros

suture zone) would result in localized extension on

the northern margin where Nemrut volcano occurs.

The existence of an extension regime is associated

with post-caldera activity and the shallow magma

chamber (Çubukçu 2008).

This first detailed geophysical study performed

using total field aeromagnetic anomalies provides

insights about the inner structures of Nemrut strato-

volcano. This study also shows the significance of

using appropriate and complementary data processing

techniques when dealing with magnetic anomaly

maps involving both short- and long-wavelength

effects caused by the volcanic rock assemblages.
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obtained by combined 2.5 D normalized full gradient results.

Pure and Applied Geophysics, 176, 5003–5026.

Paoletti, V., Fedi, M., & Florio, G. (2017). The structure of the

Ischia Volcanic Island from magnetic and gravity data. Annals of

Geophysics, 60, GM674.
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Şengör, A. M. C., Görür, N., & Şaroğlu, F. (1985). Strike-slip
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Şengör, A. M. C., Özeren, M. S., Keskin, M., Sakınç, M., Özbakır,
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